Telegram Group & Telegram Channel
Как сделать систему, которая умеет обучаться чему угодно?

Расскажу обещанные ранее мысли по поводу того, как мета-обучать алгоритм, способный на всё. У меня в голове соединились следующие идеи:

1) Во-первых, система, уже умеющая решать высокоразмерные сложные задачи, сама должна быть сложной и содержащей много информации. Так или иначе, вы не сможете сделать маленькую модель, играющую в го, или управляющую телом. У вас слишком высокоразмерные входы и выходы. При этом вы хотите уметь решать всё, а не конкретную задачу, так что модели будут огромными.

2) Как происходит обучение системы на конкретной задаче? Перед началом обучения на тестовой задаче в системе уже зашито определённое количество информации. В случае AdA у нас обученный трансформер с огромным количество параметров, порядка сотен миллионов. Вы применяете его на новой задаче, он собирает какое-то дополнительное количество информации о задаче, необходимой для её решения, и решает её за несколько попыток.

3) Далее чистая спекуляция. Для того, чтобы решить какую-то задачу, нам нужно иметь в итоговой модели X информации. Доля той информации, которую модель извлекла в процессе обучения на новой задаче, от X, и есть характеристика обучаемости.
В случае AdA в модели зашиты сотни миллионов параметров, и она заточена под решение специфичного семейства задач. Для того, чтобы начать решать новую задачу, ей нужно всего лишь извлечь несколько бит информации о скрытой динамике конкретной задачи, чтобы её решать.
Человек устроен в корне не так! ДНК человека, кодирующая всю систему, содержит всего несколько миллиардов бит информации! По этому коду строится система, которая обладает на ~пять порядков большим объёмом параметров, и обучается уже в процессе.

То есть архитектура интеллекта человека кодируется небольшим количеством параметров. В процессе эволюции происходит оптимизация очень большой системы в очень сжатом пространстве параметров.

Давайте побрейнштормим!

Напишите в комментариях как можно больше различных сжатых параметризаций устройств обучающейся системы с большим количеством параметров.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/79
Create:
Last Update:

Как сделать систему, которая умеет обучаться чему угодно?

Расскажу обещанные ранее мысли по поводу того, как мета-обучать алгоритм, способный на всё. У меня в голове соединились следующие идеи:

1) Во-первых, система, уже умеющая решать высокоразмерные сложные задачи, сама должна быть сложной и содержащей много информации. Так или иначе, вы не сможете сделать маленькую модель, играющую в го, или управляющую телом. У вас слишком высокоразмерные входы и выходы. При этом вы хотите уметь решать всё, а не конкретную задачу, так что модели будут огромными.

2) Как происходит обучение системы на конкретной задаче? Перед началом обучения на тестовой задаче в системе уже зашито определённое количество информации. В случае AdA у нас обученный трансформер с огромным количество параметров, порядка сотен миллионов. Вы применяете его на новой задаче, он собирает какое-то дополнительное количество информации о задаче, необходимой для её решения, и решает её за несколько попыток.

3) Далее чистая спекуляция. Для того, чтобы решить какую-то задачу, нам нужно иметь в итоговой модели X информации. Доля той информации, которую модель извлекла в процессе обучения на новой задаче, от X, и есть характеристика обучаемости.
В случае AdA в модели зашиты сотни миллионов параметров, и она заточена под решение специфичного семейства задач. Для того, чтобы начать решать новую задачу, ей нужно всего лишь извлечь несколько бит информации о скрытой динамике конкретной задачи, чтобы её решать.
Человек устроен в корне не так! ДНК человека, кодирующая всю систему, содержит всего несколько миллиардов бит информации! По этому коду строится система, которая обладает на ~пять порядков большим объёмом параметров, и обучается уже в процессе.

То есть архитектура интеллекта человека кодируется небольшим количеством параметров. В процессе эволюции происходит оптимизация очень большой системы в очень сжатом пространстве параметров.

Давайте побрейнштормим!

Напишите в комментариях как можно больше различных сжатых параметризаций устройств обучающейся системы с большим количеством параметров.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/79

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Knowledge Accumulator from sg


Telegram Knowledge Accumulator
FROM USA